A Hybrid Generative/Discriminative Bayesian Classifier
نویسندگان
چکیده
In this paper, we introduce a new restricted Bayesian network classifier that extends naive Bayes by relaxing the conditional independence assumptions, and show that it is partly generative and partly discriminative. Experimental results show that the hybrid classifier performs better than a purely generative classifier (naive Bayes) or a purely discriminative classifier (Logistic Regression) and has performance comparable to some state-of-the-art classifiers.
منابع مشابه
Improving Naive Bayesian Classifier by Discriminative Training
Discriminative classifiers such as Support Vector Machines (SVM) directly learn a discriminant function or a posterior probability model to perform classification. On the other hand, generative classifiers often learn a joint probability model and then use the Bayes rule to construct a posterior classifier. In general, generative classifiers are not as accurate as discriminative classifiers. Ho...
متن کاملA Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design
Semi-supervised classifier design that simultaneously utilizes both labeled and unlabeled samples is a major research issue in machine learning. Existing semisupervised learning methods belong to either generative or discriminative approaches. This paper focuses on probabilistic semi-supervised classifier design and presents a hybrid approach to take advantage of the generative and discriminati...
متن کاملCombining information theoretic kernels with generative embeddings for classification
Classical approaches to learn classifiers for structured objects (e.g., images, sequences) use generative models in a standard Bayesian framework. To exploit the state-of-the-art performance of discriminative learning, while also taking advantage of generative models of the data, generative embeddings have been recently proposed as a way of building hybrid discriminative/generative approaches. ...
متن کاملDiscriminative Training of Bayesian Chow-Liu Multinet Classifiers
Discriminative classifiers such as Support Vector Machines directly learn a discriminant function or a posterior probability model to perform classification. On the other hand, generative classifiers often learn a joint probability model and then use Bayes rules to construct a posterior classifier from this model. In general, generative classifiers are not as accurate as discriminant classifier...
متن کاملInterpretation of hybrid generative/discriminative algorithms
In discriminant analysis, probabilistic generative and discriminative approaches represent two paradigms of statistical modelling and learning. In order to exploit the best of both worlds, hybrid modelling and learning techniques have attracted much research interest recently, one example being the so-called hybrid generative/discriminative algorithm proposed in Raina et al. (2003) and its mult...
متن کامل